Characterization of Conductivity Changes During High-Frequency Irreversible Electroporation for Treatment Planning

Yajun Zhao, Graduate Student Member, IEEE, Suyashree Bhonsle, Graduate Student Member, IEEE, Shoulong Dong, Student Member, IEEE, Yanpeng Lv, Hongmei Liu, Student Member, IEEE, Ahmad Safaai-Jazi, Senior Member, IEEE, Rafael V. Davalos, Member, IEEE, and Chenguo Yao, Member, IEEE

Abstract—For irreversible-electroporation (IRE)-based therapies, the underlying electric field distribution in the target tissue is influenced by the electroporation-induced conductivity changes and is important for predicting the treatment zone. Objective: In this study, we characterized the liver tissue conductivity changes during high-frequency irreversible electroporation (H-FIRE) treatments of widths 5 and 10 µs and proposed a method for predicting the ablation zones. Methods: To achieve this, we created a finite-element model of the tissue treated with H-FIRE and IRE pulses based on experiments conducted in an in-vivo rabbit liver study. We performed a parametric sweep on a Heaviside function that captured the tissue conductivity versus electric field behavior to yield a model current close to the experimental current during the first burst/pulse. A temperature module was added to account for the current increase in subsequent bursts/pulses. The evolution of the electric field at the end of the treatment was overlaid on the experimental ablation zones determined from hematoxylin and eosin staining to find the field thresholds of ablation. Results: Dynamic conductivity curves that provided a statistically significant relation between the model and experimental results were determined for H-FIRE. In addition, the field thresholds of ablation were obtained for the tested H-FIRE parameters. Conclusion: The proposed numerical model can simulate the electroporation process during H-FIRE. Significance: The treatment planning method developed in this study can be translated to H-FIRE treatments of different widths and for different tissue types.

Index Terms—High Frequency bipolar pulses, electrochemotherapy, tumor ablation, nonthermal focal therapy, cancer treatment.

I. INTRODUCTION

W hen exposed to externally applied, pulsed electric fields (PEFs), the biological cell experiences an increase in its transmembrane potential (TMP). If the PEFs intensity is high enough, the TMP reaches a threshold that causes the induction of nanoscale defects in the plasma membrane. This phenomenon, known as electroporation, is utilized in medical technologies such as electrochemotherapy (ECT) [1]–[4] and irreversible electroporation (IRE) [5]–[9] to treat tumors. During ECT treatment, parameters are chosen such that electroporation is temporary, allowing the delivery of macroscale drugs, which could not permeate the cell membrane prior to application of the PEF. Alternately, IRE employs parameters that result in cell death due to the loss of cell homeostasis caused by the nanoscale defects (reversible and/or irreversible) [10], while also limiting the amount of thermal damage to the tissue.

Typically, thermal ablation techniques such as microwave, radio frequency (RF) and focused ultrasound that work by increasing the temperature in a target area to a critical threshold to destroy a mass of tissue [11]. Conversely, IRE’s mechanism of cell death is predominantly non-thermal, and therefore, the treatment modality is often referred to as non-thermal ablation. The advantage of such a non-thermal technique of tumor treatment is that the ablation outcome is not affected by blood perfusion and heat sensitive critical structures such as blood vessels near the treatment zone can be spared. These characteristics have enabled the widespread use of IRE in the clinical environment to treat tumors in organs such as the liver [12], kidney [13], and pancreas [14], [15].

IRE treatments are generally performed with needle electrodes placed in or around the target tumor tissue. The applied pulses induce an electric field distribution in the target area.
Depending upon the pulse parameters and tissue-type, the local electric field determines if electroporation is reversible, irreversible, or if thermal damage has occurred. To maintain its non-thermal mode of operation, IRE treatment utilizes 50 to 200 unipolar pulses of widths between 50 μs and 100 μs, pulse repetition rates of ~1 Hz, and voltage-to-distance ratios of 1500 to 3000 V/cm (applied voltage/electrode spacing) [16]–[18]. More recently, a second-generation IRE system called high frequency irreversible electroporation (H-FIRE) was proposed. H-FIRE utilizes bipolar pulses of widths from 0.5 μs to 10 μs that provide additional benefits over the long unipolar pulses [19]. The narrow bipolar H-FIRE pulses have nerve stimulation thresholds much higher than IRE pulses, and therefore, obviate the need for neuromuscular paralysis that are required during IRE treatment to suppress muscle contractions [19], [20]. In the absence of neuromuscular blocking agents, muscle contractions are shown to be severe enough to not only cause pain, but also displace electrodes, consequently affecting the ablation characteristics [18]. Another benefit of H-FIRE is associated with the tissue’s dielectric response to the high frequency content of pulses (versus the lower frequency IRE pulses), which is less influenced by electroporation related changes and more uniform across different tissues, making the outcome of the treatment planning more accurate [21]–[23]. To retain the benefits of non-thermal IRE, the on-time of the H-FIRE bursts is set to 100 μs, and the burst frequency is set to 1 Hz. According to the existing studies [24]–[26], to get an appropriate lethal volume H-FIRE treatments often utilize 80 to 300 bursts at voltage-to-distance ratios of 1500 to 3000 V/cm.

Pre-treatment planning algorithms that predict the field distribution in tissue, and consequently, the ablation zone are critical to the success of IRE and H-FIRE therapy. An important component of such algorithms is the dynamic change in conductivity of a given tissue in response to electroporation pulses that influences the field distribution [27], [28]. The field distribution, along with the electric field threshold of ablation (i.e., the field contour that traces the ablation zone), can be used to predict the ablation zone. While several studies have investigated the redistribution of the electric field during IRE treatment, due to such non-linear changes in conductivity [29], [30], the dynamic changes in tissue properties during H-FIRE treatment are yet to be studied in biological tissue in vivo.

In the present study, we have characterized the dynamic changes in tissue electrical properties during H-FIRE treatment, consisting of 5 μs and 10 μs bursts of on-time 100 μs, on in vivo rabbit livers. In addition, for comparison, we have quantified the tissue properties using traditional IRE treatment, consisting of 100 μs pulses. Models that incorporated these quantified tissue properties were then employed to determine the electric field threshold of ablation for the tested parameters.

Specifically, to achieve this goal, a finite element model of the electric field behavior in tissue during H-FIRE and IRE treatment using two-needle electrodes was simulated to examine the redistribution of the field due to electroporation and temperature effects. The Heaviside curve, adapted from prior studies [30], was used to describe the dynamic change in the tissue conductivity as a function of the local electric field. The parameters in this function were optimized by yielding a model current close to the measured current obtained from in vivo H-FIRE experiments on rabbit livers at the end of the first burst or pulse. Prior studies show that while the current increase in the first pulse is mainly due to electroporation effects; temperature effects dominate the differential increase in current in the subsequent pulses [29]. Therefore, a temperature module that reflected the cumulative effect of the multiple pulses was added to model the conductivity increase due to temperature and predict the electric field distribution at the end of the treatment. Finally, the electric field contour (from the end of the treatment) that best predicted the outer edges of the boundary was selected as the electric field threshold of ablation for the tested parameters.

II. MATERIAL AND METHODS

A. Pulse Parameters and Experimental Setup

IRE and H-FIRE treatments were conducted on in vivo rabbit livers in a prior study [25]. The schematic of an IRE pulse and H-FIRE burst are shown in Fig. 1, and the treatment parameters are described in Table I. The output voltage and currents were measured using a WavePro 760Zi-A oscilloscope (Teledyne LeCroy Inc., New York, USA) with a PPE-5kV high voltage probe (Teledyne LeCroy Inc., New York, USA) and a Pearson current probe 6600 (Pearson Electronics Inc., Palo Alto, USA).

The liver samples were harvested 72 hours after treatment. The samples were stained using Hematoxylin and Eosin (H&E). Images of each tissue section were acquired using an Aperio LV1 Digital Pathology Slide Scanner (Leica Biosystems Inc., Buffalo Grove, USA). The middle plane of the ablation zone perpendicular to the electrodes was selected to represent the ablation sizes (length and width). The ablation zones were marked and measured by professional pathologists. The details of these can be found in our previous study [25].
TABLE I

Pulse Parameters for H-Fire and IRE in the Experiments

<table>
<thead>
<tr>
<th>Pulse Type</th>
<th>Pulse Width (μs)</th>
<th>Applied Voltage (V)</th>
<th>Output Voltage (V)</th>
<th>Bipolar pulses per burst</th>
<th>Inter-pulse /burst delay (s)</th>
<th>Pulse/burst number</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-FIRE</td>
<td>5-2-5*</td>
<td>1000</td>
<td>913.04 ± 5.99</td>
<td>10</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5-2-5</td>
<td>1250</td>
<td>1136.70 ± 3.14</td>
<td>10</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5-2-5</td>
<td>1500</td>
<td>1380.39 ± 9.04</td>
<td>10</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5-2-5</td>
<td>1750</td>
<td>1607.41 ± 2.22</td>
<td>10</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5-2-5</td>
<td>2000</td>
<td>1830.62 ± 6.20</td>
<td>10</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>10-2-10</td>
<td>1000</td>
<td>906.18 ± 0.54</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10-2-10</td>
<td>1250</td>
<td>1135.99 ± 2.51</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10-2-10</td>
<td>1500</td>
<td>1390.31 ± 16.55</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10-2-10</td>
<td>1750</td>
<td>1583.54 ± 5.08</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10-2-10</td>
<td>2000</td>
<td>1838.26 ± 9.87</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>IRE</td>
<td>100</td>
<td>800</td>
<td>780.13 ± 7.36</td>
<td>–</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1000</td>
<td>973.79 ± 4.33</td>
<td>–</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>1209.33 ± 5.62</td>
<td>–</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>1454.58 ± 7.87</td>
<td>–</td>
<td>1</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

*5-2-5 means positive pulse width-inter-pulse delay-negative pulse width.

B. Numerical Model – Single Pulse/Burst

Similar to prior studies [27], a block geometry of the dimensions 3.2 × 3.2 × 1.7 cm with liver tissue properties was used for simulating the electric field distribution in the experimental tissue at the end of the first pulse/burst. The numerical model was solved using a commercial finite element package (Comsol Multiphysics, v.5.2; Stockholm, Sweden). The electrode configuration/material consisted of two stainless steel cylinders with a diameter of 1 mm, a separation of 1 cm and an exposure length of 8 mm, to mimic the actual experimental setup. The governing equation for the electric potential evolution solved under the electro-quasistatic approximation [22] is given in (1). The electric field distribution was obtained by taking the gradient of the electric potential as given in (2).

\[
\nabla \cdot (\sigma \nabla \varphi) + \varepsilon_0 \varepsilon_r \nabla \cdot \left( \frac{\partial \varphi}{\partial t} \right) = 0 \tag{1}
\]

\[
\vec{E} = -\nabla \varphi \tag{2}
\]

Here, \( \sigma \) is the tissue conductivity, \( \varphi \) the electric potential, \( \varepsilon_r \) is the relative permittivity of the tissue, and \( \varepsilon_0 \) is the permittivity of free space. The electrical boundary conditions in contact with the source and the sink electrodes were set to \( \varphi = V(t) \) and \( \varphi = 0 \), respectively. Here, \( V(t) \) is an IRE pulse or H-FIRE burst constructed by using combinations of smoothed Heaviside functions and multiplied by pulse amplitude. Specifically for an IRE pulse, two Heaviside functions with a 100 μs delay (pulse width) and rise/fall time of 50 ns were used to construct a unipolar pulse. For the H-FIRE burst, four Heaviside functions (rise/fall times of 50 ns) with time delays corresponding to the widths and inter-phase delay were used to create one bipolar pulse. The bipolar pulse was then extended to a periodic function to obtain one bipolar pulse burst of on-time 100 μs. All pulses/bursts were tested at the average output pulse amplitudes given in Table I. The normal current density over one of the electrode surfaces was integrated to calculate the total current delivered to the tissue. All remaining boundaries were treated as electrically insulating. The mesh size was refined until there was less than a 2% difference in the field results between refinements, resulting in fine mesh setting.

For the first pulse/burst, the tissue conductivity was treated as dynamically changing with the electric field (electroporation-related effects) alone and is given in (3).

\[
\sigma (|\vec{E}|) = \sigma_0 (1 + Afle2hs \left(|\vec{E}| - E_{del}, E_{range}\right)) \tag{3}
\]

Here, \( \sigma_0 \), the initial conductivity of tissue (i.e., prior to treatment), was fixed to a certain value and \( |\vec{E}| \) is the underlying magnitude of the electric field. The \( \text{flc2hs} \) is a smoothed Heaviside function with a continuous second derivative that ensures convergence of numerical solution. In the given form, the function \( \sigma (|\vec{E}|) \) changes from \( \sigma_0 \) to \( \sigma_0 (1 + A) \) over the range 2\( E_{range} \) with transition starting at \( E_{del} - E_{range} \) and ending at \( E_{del} + E_{range} \) (Fig. 2). Therefore, \( E_{del} \) is the mid-point of the transition zone and \( E_{range} \) gives half the value of the transition zone. The
Fig. 3. The Fourier spectrum of the first burst of the H-FIRE voltage waveform consisting of bipolar pulses of schemes 5-2-5 μs and (a) 10-2-10 μs (b) applied at a voltage of 1500V. The Fourier spectrum of the first 100 μs IRE pulse applied at a voltage of 1500V (c).

The parameters $A$, $E_{del}$, and $E_{range}$ were treated as unknowns, and were optimized using the parametric sweep module to make the modeled current close to the experimental current.

C. Parameter Estimation

Table III shows the ranges over which the variables $A$, $E_{del}$, and $E_{range}$ were scanned to obtain an optimal fit between the model and experimental current. The experimental current during the last 1 μs of the first pulse/burst was averaged to reduce the effects of noise. According to previous studies [27], [29], [30], [33], [34], the maximum conductivity change due to permeabilization was expected to be, at most, 4 times that of the initial conductivity and therefore, the parameter $A$ was tested between 0 and 3. Next, the parameter $E_{del}$, which determines the midpoint of the transition zone of the Heaviside function, was tested over the range of 0 to 3000 V/cm. Prior studies have found that $E_{del}$ for traditional 100 μs pulses is $\sim$600 V/cm [30]. However, this value was expected to be higher for 5 μs and 10 μs pulses,
as their permeabilization thresholds are $\sim\!1.5-3$ times higher (depending on pulse width) [19] than the 100 $\mu$s pulses and therefore, $E_{\text{del}}$ was tested over a larger range. Finally, $E_{\text{range}}$, which controls the transition range of the Heaviside function around $E_{\text{del}}$, was tested between 0 and $E_{\text{del}}$ V/cm. Since, the low side of the transition zone, $E_{\text{del}} - E_{\text{range}}$, is always positive, $E_{\text{range}}$ is always less than $E_{\text{del}}$. 

$$TIC = \frac{\sqrt{\sum (I_i - I_{\text{opt}})^2}}{\sqrt{\sum I_i^2} + \sqrt{\sum I_{\text{opt}}^2}}$$ (4)

Theil’s inequality criteria (TIC), given in (4), was used for determining the set of parameters that resulted in the best match between the model and experimental current for all amplitudes. $I_i$ is the experimental current and $I_{\text{opt}}$ is the modeled current, for the $i$th experiment. One TIC value was obtained for each pulse/burst type i.e., a 100 $\mu$s pulse, a 5-2-5 $\mu$s burst and a 10-2-10 $\mu$s burst. More details of this test can be found in [27]. The values of TIC are in the range of 0 and 1, where values below 0.3 indicate good agreement; therefore, the conductivity function parameters that resulted in the lowest TIC for the currents were selected.

In addition to this test, a coefficient of determination, $R^2$ defined in (5) was calculated to provide a statistical measure of how well the optimized model data approximates the experimental data, for each pulse/burst type [34].

$$R^2 = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}$$

$$SS_{\text{res}} = \sum (I_i - I_{\text{opt}})^2$$

$$SS_{\text{tot}} = \sum (I_i - \bar{I})^2$$ (5)

Here, $I_i$ is the experimental current, $\bar{I}$ is the average of the experimental currents and $I_{\text{opt}}$ is the optimized model current for each pulse amplitude. The coefficient $R^2$ takes on values between 0 and 1, where higher values indicate a good fit between the optimized model and experimental data.

### D. Multi-Pulse Temperature Effects

Initial studies characterizing the conductivity changes discounted the effects of multiple pulses on the tissue, i.e., they assumed each consecutive electroporation-inducing pulse produced the same current or conductivity and therefore, the same electric field distribution [27], [35]. However, experimentally it was observed that consecutive pulses produced higher current/conductivity than the previous pulse [29]. These could be attributed to long-term pores, re-sealing dynamics, changes in tissue structure and temperature effects. A study on kidney tissue [29], however, showed that for IRE pulse protocols consisting of 200 pulses, the differential increase in conductivity between consecutive pulses is dominated by temperature increase. Based on this assumption, the conductivity at the end of each consecutive pulse was modeled as a function of temperature in addition to the electric field magnitude in the given (6).

$$\sigma(\{\bar{E}\}, T) = \sigma(\{\bar{E}\}) + \sigma(T)$$

$$= \sigma_0[1 + Aflc2hs(\{\bar{E}\} - E_{\text{del}}, E_{\text{range}})]$$

$$+ \alpha(T - T_0)$$ (6)

Here, $T_0$ is the ambient temperature before the treatment and was set to physiologic tissue temperature of 310.15K (37 °C). $T$ is the tissue temperature, and $\alpha$ is the temperature coefficient that reflects the tissue conductivity change with temperature. For liver tissue, prior studies have determined the value of $\alpha$ to be 2%/K [36].

The instantaneous temperature distribution ($T$) was determined using the Pennes’ Bioheat equation (7) [29].

$$\nabla \cdot (k\nabla T) + \rho_b\omega_b(T_a - T) + q'' + \frac{\sigma|\nabla \Phi|^2}{\tau} = \rho c_p \frac{\partial T}{\partial t}$$ (7)

Here, $k$ is the thermal conductivity of the tissue, $c_b$ and $c_p$ are the blood and tissue heat capacity, respectively, $T_a$ is the arterial temperature, $\rho_b$ and $\rho$ are the blood and tissue density, $q''$ is the metabolic heat generation, $\omega_b$ is the blood perfusion rate, and $\sigma|\nabla \Phi|^2$ is the Joule heating term that accounts for resistive heating of the tissue.

As proposed in prior studies [29], to simplify the simulation process, the Joule heating term was scaled according to the pulse or burst on-time, $d$, divided by the period between the pulses or bursts $\tau$, averaging the heating over the entire intra- and inter-pulse duration. The parameters used in the Pennes’ Bioheat equation are shown in Table IV.

### E. Electric Field Thresholds of Ablation

To validate the multi-pulse numerical model as well as determine the electric field threshold of ablation for the different IRE and H-FIRE pulse parameters (Table I), the electric field contours that were obtained at the end of the simulation were matched to the ablation zone. Specifically, the mid-plane contour that best mapped the outer edges of the ablation zone was selected as the electric field threshold of ablation ($E_{\text{th}}$) and used for further analysis. The long and short axis of this contour was measured using ImageJ (National Institutes of Health, Bethesda, Maryland) and independent t-tests were performed in Excel (Microsoft Corporation, Redmond, WA) between these

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_c$</td>
<td>1079</td>
<td>kg/m$^3$</td>
<td>[36]</td>
</tr>
<tr>
<td>$\rho_b$, blood density</td>
<td>1060</td>
<td>kg/m$^3$</td>
<td>[30]</td>
</tr>
<tr>
<td>$c_b$, heat capacity</td>
<td>3540</td>
<td>J/kg/K</td>
<td>[36]</td>
</tr>
<tr>
<td>$k$, thermal conductivity</td>
<td>0.52</td>
<td>W/m/K</td>
<td>[36]</td>
</tr>
<tr>
<td>$w_b$, blood perfusion term</td>
<td>7.15 $\times$ 10$^{-3}$</td>
<td>l/s</td>
<td>[30]</td>
</tr>
<tr>
<td>$c_p$, heat capacity of blood</td>
<td>3840</td>
<td>J/kg/K</td>
<td>[30]</td>
</tr>
<tr>
<td>$T_a$, arterial temperature</td>
<td>37</td>
<td>°C</td>
<td>[36]</td>
</tr>
<tr>
<td>$q''$ metabolic heat production</td>
<td>33800</td>
<td>W/m$^3$</td>
<td>[36]</td>
</tr>
</tbody>
</table>
values and those of the actual ablations. A difference with $P \leq 0.05$ was considered statistically significant.

III. RESULTS AND DISCUSSION

A. Estimation of the Parameters

The experimental voltage and current during the first H-FIRE burst for the 5 $\mu$s and 10 $\mu$s pulses is shown in Fig. 4(a) and Fig. 4(b), respectively, and the first IRE pulse is shown in Fig. 4(c). The parameters in the conductivity function were optimized to make the simulation current close to the experimental current at the end of the first burst or pulse (flat portion) and are shown in Table V. The conductivity curves plotted from the optimized parameters are shown in Fig. 5. This curve quantifies the change in conductivity as a function of the electric field (due to electroporation, $\sigma(E)$). While this curve is determined from the first pulse (assuming negligible temperature effects), it is assumed that consecutive pulses also show similar change in conductivity due to electroporation (applied electric field). The additional increase in current/conductivity in the consecutive pulses is due to temperature ($\sigma(T)$). Therefore, the change in conductivity during each consecutive pulse can be determined from $\sigma(E) + \sigma(T)$ [29].

It was found that $E_{del}$, which determines the electric field magnitude at the mid-point of the transition zone of Heaviside function, is lower for the IRE pulse than the H-FIRE burst. In addition, $E_{range}$, which determines transition zone of the Heaviside function around $E_{del}$, was found to be higher for the H-FIRE burst.

Next, it was observed that the parameter, $A$, which indicates the extent of conductivity change during the first pulse or burst was higher for the IRE pulse than the H-FIRE burst. This result can be attributed to pore dynamics that come into play during the application of electroporation-inducing pulses. Studies have shown that the size and number of pores created during the delivery of longer, unipolar pulses is greater than shorter, bipolar pulses, thereby, causing a larger increase in permeability [37], [38] and consequently, the electrical conductivity. Similar to prior studies [21], this result shows that the conductivity
changes during treatment with H-FIRE pulses are mitigated. Additionally, the conductivity changes are reduced with decreasing widths, i.e., the value of parameter $A$ is smaller for the $5 \mu s$ pulses than the $10 \mu s$ pulses.

The modeled and the measured currents at the end of the first pulse/burst for different applied voltages are shown in Fig. 6. The chosen parameters of the conductivity curves resulted in TIC values of 0.041, 0.053 and 0.079 for $5 \mu s$, $10 \mu s$ and $100 \mu s$ pulses, respectively. In addition, the coefficients of determination $R^2$ were 0.929, 0.892 and 0.799 for $5 \mu s$, $10 \mu s$ and $100 \mu s$ pulses, respectively. These values show that there was good agreement between the simulation and experimental results.

Overall, it was found that our method of determining optimal parameters between the modeled and measured currents resulted in better fits for the H-FIRE bursts than the IRE pulse. This could be attributed to larger variability in the measured current results during IRE treatment. This inconsistency could be attributed to the movement of the electrodes due to presence of muscle contractions during IRE treatment [25]. During H-FIRE experiments, the muscle contractions were significantly suppressed, leading to results that are more consistent.

### B. Validation by Ablation Size

The representative images for the electric field threshold contour overlaid on the ablation zones for the $5 \mu s$, $10 \mu s$ and $100 \mu s$ pulses with a pulse amplitude of $1250V$ are shown in Fig. 7(a), Fig. 7(c) and Fig. 7(e), respectively. Fig. 7(b), Fig. 7(d) and Fig. 7(f) are the partial enlarged view of live/dead regions. For the 90 pulse/burst treatment, the electric field thresholds that best determined the ablation zones were found to be $713 \text{ V/cm}$, $610 \text{ V/cm}$ and $450 \text{ V/cm}$ for the $5 \mu s$, $10 \mu s$ and $100 \mu s$ pulses, respectively. Similar to prior studies [17], [19], it was found that for the same on-time, the ablation sizes were larger and the ablation thresholds were smaller for the longer pulses.

Prior studies have shown that, for an 8 pulse protocol, the inflection points ($E_{\text{del}} - E_{\text{range}}$ and $E_{\text{del}} + E_{\text{range}}$) on the conductivity curves are an indication of the reversible and irreversible electric field thresholds of permeabilization [27]. Based on this, the thresholds for irreversible electroporation were $1550 \text{ V/cm}$, $1450 \text{ V/cm}$ and $850 \text{ V/cm}$ for the $5 \mu s$, $10 \mu s$ and $100 \mu s$ pulses, respectively. The results, therefore, indicate that the irreversible ablation thresholds for the 90 IRE pulse treatment were smaller than the reported ablation thresholds for the 8 pulse treatment. This trend between the pulse number and ablation size is in agreement with the current literature [17], [39], however, the exact relation between pulse number and ablation thresholds is yet to be determined and is proposed as a future study.

Table VI shows the measurements of the long and short axes of the ablation zones determined from the experiments [25], the simulations, and the results of the independent t-tests. Of the 28 comparisons, only two comparisons between the simulated and actual ablation zones showed statistical differences. These were a $P$-value of 0.0390 for the long axis of an ablation obtained from the $10 \mu s$ burst treatment of $2000V$ amplitude and a $P$-value of 0.0166 for the long axis of an ablation obtained from the $100 \mu s$ pulse treatment of $1250V$ amplitude.

Some limitations of this study need to be addressed in future work. The conductivity changes quantified in this study were attributed to short-term pores created during the pulse/burst and temperature increase during treatment; however, the effects of long-term pores present during the inter-pulse or burst delay.

![Comparison of modeled and experimental currents](image_url)
were ignored. In current literature, only one study has explored the effects of the resealing dynamics on tissue conductivity for a short number of pulses (8 pulses) [40]. However, the model employs a large number of empirically parameters, which are difficult to translate to 80–100 pulse protocols. Next, while the tissue properties were characterized using healthy rabbit livers, the differences in these electrical properties for tumor tissue and across different species is yet to be studied.
IV. Conclusion

In this study, the dynamic conductivity changes during H-FIRE treatment of 5 μs and 10 μs pulses were quantified and compared to conventional IRE pulses. The simulation results were in good agreement with the experimental results on in vivo rabbit livers. These included the current at the end of the first burst or pulse and the value of the electric field thresholds of ablation determined at the end of treatment. The coefficient $A$, which determines the differential change in conductivity caused by the electroporation-inducing pulses, was larger for the conventional IRE pulses than the H-FIRE bursts, indicating that conductivity changes are mitigated during H-FIRE treatment. While the study has been conducted for 90 H-FIRE bursts of 10 μs and 5 μs widths, the method developed can be easily adapted to different H-FIRE widths and numbers of bursts.

Acknowledgment

The authors would like to thank China Scholarship Council and the Institute for Critical Technology and Applied Science for their support of this research. They would also like to thank Dr. H. Wang and Dr. J. L. Robertson for their help in pathological analysis. R. V. Davalos has pending and accepted patents on IRE and H-FIRE.

References


