Focal blood-brain-barrier disruption with high-frequency pulsed electric fields

Christopher B. Arena¹²*, Paulo A. Garcia¹³*, Michael B. Sano¹*, John D. Olson⁴, Thomas Rogers-Cotrone⁵, John H. Rossmeisl Jr.⁵ & Rafael V. Davalos¹

The blood-brain-barrier (BBB), a network of tight junctions that impedes large molecule transport, limits the usefulness of systemic chemotherapeutic delivery for the treatment of malignant gliomas and other neurological diseases. Here, we present a tool for BBB disruption that uses bursts of sub-microsecond bipolar pulses to enhance the transfer of large molecules to the brain. Blunt needle electrodes were advanced into the motor cortex of anesthetized adult rats, and a series of 90–900 bursts were delivered with voltage-to-distance ratios of 250 or 2000 V/cm, a total programmed energized time of 100 µs, and a repetition rate of 1 Hz. BBB disruption was assessed via a gadolinium-Evans blue albumin tracer, and all experimental conditions were found to cause BBB disruption immediately following treatment without inducing local or distal muscle contractions. The lowest energy condition, 300 bursts consisting of 850 ns bipolar pulses, resulted in significant BBB disruption (0.51 cm³), without displaying necrotic or apoptotic damage to neurological tissue.

INNOVATION

The Vascular Enabled Integrated Nanosecond pulse (VEIN pulse) platform is a new technology for reversibly opening the blood-brain-barrier (BBB) to facilitate the treatment of brain cancer. Our experiments reveal that the delivery of bipolar sub-microsecond pulses eliminates the electrically induced movement associated with longer duration unipolar pulses used in irreversible electroporation and electrochemotherapy treatments. Therefore, it may be possible in the future to perform these procedures while patients are under conscious sedation and assess cognitive function as the therapy is being delivered. The sub-lethal nature of these bursts indicates that this modality may be useful for treating other neurological disorders, such as Parkinson's disease and epilepsy, in which certain therapeutics show effectiveness in in vitro models of disease, but fail to reach their therapeutic target in vivo. Generation of these waveforms is possible using solid-state electronics, enabling the creation of compact systems that can easily be scaled for human clinical applications.

INTRODUCTION

Currently, there is no effective therapy for malignant glioma. By nature of their neuro-invasiveness, high-grade variants of gliomas are difficult to treat and generally considered incurable with singular or multimodal therapies¹-⁴. One reason for poor survival is that treatment may be limited by inefficient intracellular delivery of chemotherapy. Most agents demonstrating in vitro cytotoxic effects against glial tumors do not cross the blood-brain-barrier (BBB) in vivo. Although the BBB is compromised in portions of high-grade gliomas that are associated with leaky blood vessels, there is evidence that these heterogeneous tumors contain areas of infiltrative tumor with an intact BBB that limits the effectiveness of systemic chemotherapeutics⁵,⁶. Techniques that uniformly increase BBB permeability and delivery of low-dose cytotoxic agents into tumors may yield improved tumor control⁷,⁸. Conventional osmotic agents or receptor-mediated mechanisms of BBB disruption result in widespread, non-targeted effects that can be associated with adverse events⁹. For example, when a bradykinin analog was used to disrupt the BBB in a Phase II trial for childhood brain tumors, the chosen dosage did not improve chemotherapeutic efficacy, and the patients experienced frequent headaches, flushing, and vomiting due to bradykinin¹⁰. Alternatively, focused ultrasound has emerged as a physical method to temporarily open the BBB¹¹. The procedure involves systemic injection of gas filled microbubbles and transcranial delivery of acoustic energy focused at the target tissue¹². It is thought that ultrasound induces oscillations in the microbubbles that safely open tight junctions in the blood vessel walls through mechanical stretching. Despite the non-invasive nature of the procedure, beam focusing reduces the coverage area of individual treatments, resulting in extended treatment times for large volumes¹³.

Here, we investigate an alternative to chemical and acoustic modalities that utilizes electric fields. Previously, it was discovered that a series of short duration (~100 µs) high amplitude (~1000 V/cm) unipolar electric pulses could induce irreversible electroporation (IRE) of cell membranes without causing significant thermal effects¹⁴,¹⁵. This technology was
successfully adapted for non-thermal tumor ablation, including malignant glioma16,17. Minimally invasive needle electrodes were inserted through a defect in the skull to direct the pulse application. While investigating the effects of IRE on brain tissue, it was revealed that sub-lethal pulse parameters resulted in transient disruption of the BBB due to reversible electroporation4,18.

One challenge with delivering unipolar electric pulses for non-thermal ablation or BBB disruption is that they result in significant muscle contractions20. As electrically induced movement could compromise electrode positioning, IRE procedures typically require that patients receive a neuromuscular blocker and general anesthesia. Preliminary studies suggest that this requirement may be removed by designing pulses that alternate in polarity. When bipolar bursts of pulses with individual durations of 2 µs or less were applied to the sensorimotor cortex of rats, it was noted that non-thermal ablation could be achieved without inducing muscle contractions21. To the best of our knowledge, these types of pulses have not been studied in vivo for BBB disruption.

In this study, a custom pulse generator capable of delivering bipolar bursts of pulses as short as 500 ns was used to explore if sub-lethal BBB disruption can be achieved without causing muscle contractions. These Vascular Enabled Integrated Nanosecond (VEIN) pulse treatments were performed in normal rat brain by varying the pulse duration within a burst, the total number of bursts, and the applied field. BBB disruption was assessed using an Evans blue–albumin (EBA) complex uptake on histological sections and a gadolinium-EBA complex uptake on MRI scans. Muscle contractions were monitored visually and with an accelerometer placed along the dorsum. Applying 300 bursts containing pulses of 850 ns resulted in BBB disruption without any electrically induced muscle contractions or cell death. Therefore, this technique has the potential to be performed clinically under conscious sedation without neuromuscular blockade.

METHODS

Animals and intracranial VEIN pulse delivery procedure

All study procedures were approved by the Institutional Animal Care and Use Committee approval (10-163-CVM). Eighteen male Fischer 344 rats weighing 190–225 g were pre-medicated with buprenorphine (0.02 mg/kg subcutaneously) and then anesthetized with inhaled isoflurane delivered via induction chamber. Anesthesia was maintained with inhaled isoflurane delivered through a nose cone; provision of a surgical plane of anesthesia was assessed by loss of the tail or toe pinch reflex. A 3-axis accelerometer breakout board (Adafruit Industries ADXL335), capable of sensing muscle contractions up to 3 g and fitted with low-pass filter capacitors (0.1 µF) at the x, y, and z outputs for noise reduction, was secured to the dorsum of each rat at the cervicothoracic junction using 5-0 monocryl suture. The hair of the skull was clipped and aseptically prepared using povidone-iodine and alcohol solutions. Anesthetized rats were placed in a small animal stereotactic head frame (Model 1530M, David Kopf Instruments, CA, USA). A routine, right unilateral rostroventral surgical approach to the skull was made and a 1.5 mm × 5 mm rectangular craniectomy defect was created in the skull of each rat using a high-speed electrical drill. The rostral aspect of the craniectomy was created at the following stereotactic location relative to the bregma: 4 mm posterior and 3.5 mm lateral and extended caudally. The exposed dura was punctured with scalpel blade or hypodermic needle, and the electrodes were then advanced to a depth of 1.5 mm beneath the surface of dura using the manipulator arm of the stereotactic frame. The electrodes used for pulse delivery were blunt-tipped electrodes (0.45 mm Ø, 0.4 cm spacing, and 1.0 mm exposure) as previously described18.

The pulse parameters delivered to rodents are summarized in Table 1. The applied voltage-to-distance ratios across the 0.4 cm gap are used to define the electric field, even though it is understood that needle electrodes produce a non-uniform distribution. Waveforms were generated using an arbitrary function generator (AFG3011, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA). Output waveforms were visualized using an oscilloscope (TDS1002b, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA). Output waveforms were visualized using an oscilloscope (TDS1002b, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA). Output waveforms were visualized using an oscilloscope (TDS1002b, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA). Output waveforms were visualized using an oscilloscope (TDS1002b, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA). Output waveforms were visualized using an oscilloscope (TDS1002b, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA). Output waveforms were visualized using an oscilloscope (TDS1002b, Tektronix Inc., Beaverton, Oregon) to trigger a custom-built high voltage pulse generator capable of delivering ± 1000 V (Applied Energetics, Tucson, AZ, USA).

<table>
<thead>
<tr>
<th>Group</th>
<th>Programmed pulse duration (µs)</th>
<th>Programmed voltage-to-distance (V/cm)</th>
<th>Number pulses per burst</th>
<th>Number bursts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>250</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>250</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>250</td>
<td>200</td>
<td>900</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>250</td>
<td>50</td>
<td>900</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>2000</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>2000</td>
<td>0</td>
<td>0 (Sham, n = 2 or unoperated control, n = 1)</td>
</tr>
</tbody>
</table>

Figure 1 VEIN pulse example output and accelerometer recording. (a) Voltage recording during 2 of the 200 pulses that comprised a single burst from a Group 3 treatment. (b) The corresponding current measurement. (c) The corresponding acceleration measurement (reported as normalized g-force).
Evans blue solution was delivered via intraperitoneal injection and bound to albumin in the blood (67 kDa) to form the EBA complex. Select rats subjected to MRI examinations received 2.5 ml of gadolinium-EBA (Gd-EBA) solution (74 kDa). Both formulations are considered high molecular weight tracers designed to mimic the diffusion properties of polar protein drugs (growth factors, antibodies, genetic vectors). The Gd-EBA solution was prepared by diluting a stock solution of 25 mg/ml Gd-albumin (Galbunin, BioPAL Inc., Worcester, MA, USA), containing 10–15 Gd-DTPA per albumin molecule, with deionized water to a concentration of 10 mg/ml. The Gd-albumin was then mixed with EB (1 mg Evans Blue (Sigma, St. Louis, MO, USA) per 2 ml Gd-albumin) to make the tagged Gd-EBA complex. Following completion of the pulse delivery, 15 minutes were allowed to lapse prior to withdrawal of the electrodes from the brain. Following removal of the electrodes, rats were euthanized by intraperitoneal injection of 1 ml of a phenytoin-pentobarbital solution (Beuthanasia-D, Abbott Laboratories, Abbott Park, IL, USA) followed by cervical dislocation. The brains were harvested and processed as described below.

Ex vivo brain magnetic resonance imaging (MRI) examinations

Select rats which received IP Gd-EBA were subjected to *ex vivo* MRI examination of the brain in *situ* within 15 minutes of euthanasia using a 1.5-T superconducting magnet (Philips Intera, Philips Healthcare, Andover, MA, USA) with an 8-channel volume head coil. T1-weighted images were obtained in 3 planes using a spin echo sequence (Echo time [TE] = 15 ms, Repetition time [TR] = 410 ms, 2 mm slice thickness with 0.5 mm spacing, 224 x 224 mm field of view (FOV), and 256 x 256 mm matrix), and a high-resolution multiplanar three-dimensional gradient echo sequence (TE = 4.4 ms, TR = 25 ms, 1.5 mm slice thickness with no gap, 128 x 128 mm FOV, and 256 x 256 mm matrix).

Additional rodents receiving IP Gd-EBA underwent *ex vivo* MRI examination of the brain in *situ* within 2 hours of euthanasia using a 7.0-T small animal MRI scanner (Bruker Biospec 70/30, Ettlingen, Germany). A 38 mm inner diameter quadrature volume coil will be used for RF signal transmission and reception (Litzcage, Doty Scientific, Columbia, SC). Sequence acquisition parameters were: T1-weighted using a Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with 8 echoes (TR = 1440 ms, TE = 7.5 ms, FOV = 4 cm, matrix = 256 x 256, slice thickness = 0.5 mm, NEX = 8), followed by T2-weighted using a RARE pulse sequence with 8 echoes (TR = 6575 ms, TE = 60 ms, FOV = 4 cm, matrix = 256 x 256, slice thickness = 0.5 mm, NEX = 8).

Blood-brain barrier volumetric quantification and brain pathologic analyses

Following euthanasia, the brain was harvested and digital photographs were obtained of the dorsal surface of the entire brain prior to immersion fixation in 10% neutral buffered formalin solution. The immersion fixed intact brain of each rodent was inserted into an adult rodent matrix slicer (Zivix, Instruments, Pittsburgh, PA, USA) and digital photographs obtained of the exposed dorsal surface of the brain. The brain was then serially sectioned in the transverse plane at 1 mm intervals extending from the olfactory bulbs to the rostral cerebellum, with each individual transverse section paraffin embedded in a tissue cassette. The positions of the transverse sections at which the Gd-EB was first and last visible (the anterior/rostral and posterior/caudal limits of the z-plane of the BBB disruption) were co-registered to the corresponding channels of the brain matrix and recorded. Transverse brain sections containing EBA within these defined rostral and caudal limits were serially sub-sectioned in the transverse plane at 10 μm thickness and 200 μm intervals using a microtome and mounted on charged microscope slides. Digital photomicrographs (Nikon Eclipse Ni-E, Nikon, Japan) of the fluorescent volumes intraparenchymal EBA were obtained from all intervening transverse sections using a charged-coupled device camera with a fixed aperture (Nikon DS-Fi1c, Nikon, Japan) and an ultraviolet light source. The volume of EBA fluorescence resulting from the transverse image stack from each rat was calculated using the volumetric algorithm on a commercial image analysis system (Stereo Investigator; MBF Bioscience, Williston, VT, USA).

Capse-3 immunohistochemistry

Transverse brain segments were selected at 5 μm and were dried at 37 °C for 1 hour. Deparaffinization and antigen retrieval were performed in Reveal solution in a decloaking chamber (Biocare Medical, Walnut Creek, CA, USA). Endogenous peroxidase activity was blocked by 30 minute incubation with 5% bovine serum albumin in PBS/0.2% TX-100 (Sigma, St. Louis, MO, USA), followed by two consecutive 10 minute washes in PBS (Sigma). Slides were then incubated overnight at room temperature with polyclonal primary antibody (ab4501, 1:200 dilution; Abcam, Cambridge, MA, USA). After washing twice for 10 minutes with PBS, slides were incubated with prefiltered biotinylated goat anti-rabbit IgGs (Abcam) for 1 hour at room temperature and streptavidin horseradish-peroxidase (Vector, Burlingame, CA, USA). Immunoreactive cells were visualized with fast red chromogen and hematoxylin counterstain (Ventana Medical Syustems, Tucson, AZ, USA). Rat splenic tissue was used for a positive control, and negative controls were treated as described above save for omission of the primary antibody.

Quantitative determination of capse-3 immunoreactivity

Slides immunohistochemically stained for capse-3 were examined by an investigator blinded to the experimental treatments. The specific slice examined in each rat was at the brain level containing the rostral electrode insertion track. The examiner was asked to select three 40× magnification random fields of view (RFV) from the following four brain regions of each rat from both the treated and contralateral untreated hemispheres of the brain: 1) the superficial cerebral cortex in the region of the electrode insertion, 2) the deep termination point of the electrode insertion, representing the electrode tip, 3) the hippocampal CA1 region in the treatment area, and 4) the choroid plexus of the lateral ventricle. The RFV from each region and hemisphere were captured with a charge-coupled device digital camera (Nikon DS-Fi1c). Digitalized images were optically segmented, using intensity thresholding compared with positive control tissues, in order to allow discrimination of negative from positive (Nikon Elements AR, Nikon Japan). This segmentation process allowed for generation of binary images from which the number of positively stained objects and cell nuclei in each RFV could be quantified. For determination of labeling indices for each brain region, at least 500 total cells were counted, and a region-specific capse-3 labeling index (LI) determined as follows:

$$\text{Caspase-3 LI} = \frac{\# \text{Caspase-3 immunoreactive cells}}{\text{Total #Nuclei}} \times 100$$ (1)

Statistical analyses

One-way ANOVA was used to test for differences in the volume of BBB disruption between the VEIN pulse parameters tested, as well as to evaluate differences in capse-3 LI among treatments and brain regions. When results of ANOVA were significant, Tukey post-hoc comparisons were used to examine differences among treatment groups. Statistical analyses were performed using commercial software (SAS, version 9.0, Cary, NC, USA) and α = 0.05.

RESULTS

VEIN pulse intracranial procedure

Other than normal respiratory motions occurring under anesthesia, no gross movement was observed during VEIN pulse administration in any...
rodent in the study, and no significant intraoperative complications were noted in any rodent. Additionally, the accelerometer was unable to detect any electrically induced movement (shown for Group 2 in Fig. 1). It is important to note that the accelerometer recordings from the high voltage trials (Group 5) were corrupted by electrical noise that fell within the same frequency bandwidth as a typical muscle contraction. This eliminated the possibility of filtering to isolate potential muscle contractions. In this case, visual observation served as the only means to assess muscle contractions, or lack thereof. Figure 1 also includes samples of the voltage and current measurements from Group 2.

At low voltages, the shortest pulse duration achieved was, on average, 850 ns. The rise and fall times of these short duration pulses are dependent on the resistance and capacitance of the electrodes and tissue. A 500 ohm resistor was placed in parallel with the load to aid in waveform shaping. In the low voltage experiments, this technique was less successful in producing the desired wave shape. The waveform was slightly distorted with the pulses having an extended fall time. As the voltage increased, the pulse duration approached the desired mark of 500 ns per phase (Table 2). This decrease in pulse duration is likely due to electroporation effects decreasing the resistance of the tissue and, in turn, creating a shorter pulse fall time.

Table 2 Energy and temperature calculations (values from Ref. 16 for comparison).

<table>
<thead>
<tr>
<th>Group</th>
<th>Measured pulse duration (μs)</th>
<th>Measured voltage-to-distance (V/cm)</th>
<th>Number bursts</th>
<th>Energy per treatment (J/m³)</th>
<th>Predicted temperature change (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.85</td>
<td>260</td>
<td>300</td>
<td>5.6 × 10⁵</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>0.85</td>
<td>260</td>
<td>600</td>
<td>1.1 × 10⁶</td>
<td>2.70</td>
</tr>
<tr>
<td>3</td>
<td>0.85</td>
<td>260</td>
<td>900</td>
<td>1.7 × 10⁷</td>
<td>4.05</td>
</tr>
<tr>
<td>4</td>
<td>2.59</td>
<td>253</td>
<td>900</td>
<td>1.3 × 10⁷</td>
<td>3.08</td>
</tr>
<tr>
<td>5</td>
<td>0.48</td>
<td>1995</td>
<td>90</td>
<td>6.1 × 10⁷</td>
<td>14.62</td>
</tr>
<tr>
<td>IRE*</td>
<td>50</td>
<td>1250</td>
<td>80</td>
<td>1.1 × 10⁷</td>
<td>2.64</td>
</tr>
</tbody>
</table>

* Ref. 16.

VEIN pulse blood brain barrier disruption

Focal disruption of the BBB was achieved in all treated rodents as evidenced by the visualization of EBA or Gd-EBA solutions within treated brain regions on pathological or MRI examinations, and absence of tracer uptake in the sham operated controls and contralateral control hemispheres (Fig. 2). The treatment location is illustrated by Fig. 2d, where the white “x” marks indicate electrode positioning, and the broken line indicates the superficial region of BBB disruption as evidenced by EBA uptake. On select MRI scans (Fig. 2b,c,d), hyperintense areas signifying Gd uptake correspond with regions of EBA on pathologic sections. In the sham operated brain slice (Fig. 2g), hemorrhage within the electrode insertion track is visible.

The volume of BBB disruption differed significantly among the examined treatment parameters (ANOVA, F(2,4) = 36.44, p = 0.0027). Post-hoc comparisons (Fig. 3) indicated that the mean volume of BBB disruption was significantly smaller in Group 1 (0.51 ± 0.04 cm³) compared to all other groups, and significantly larger in Group 5 (1.09 ± 0.12 cm³) compared to all other groups. Volumes of BBB disruption did not differ significantly between Groups 2 (0.68 ± 0.03 cm³) and 3 (0.68 ± 0.09 cm³; p = 0.73), Groups 3 and 4 (0.63 ± 0.06 cm³; p = 0.59), or Groups 2 and 4 (p = 0.48).

Histopathological analysis of VEIN pulse delivery

No microscopic or gross abnormalities were detected in unoperated contralateral control brains. In the treated cerebral hemispheres of Groups 1 and 6, lesions were limited to the physical displacement of the brain tissue in the trajectory of the electrode insertion, with occasional foci of hemorrhage noted on the pial surface or within the electrode track (Fig. 4a,f). In Groups 2, 3, and 4, the laminar organization of the brain remained intact, but there was mild vacuolization of the neuropil in regions of BBB disruption, as well as foci of neurons, glia, vascular endothelium, and choroid plexus epithelium demonstrating cytoplasmic condensation, nuclear pyknosis, and apoptotic body formation (Fig. 4b–d). The brains of Group 5 rats displayed severe cytotoxicarchitectural disruption, perivascular inflammation, and coagulative brain necrosis in treated regions (Fig. 4e).

Figure 2 Pathologic and MRI evidence of BBB disruption induced by VEIN pulses. All treatments were administered in the right cerebral hemispheres. The electrode insertion points (white “x” marks) relative to the dorsal surface of the brain (d) and limits of BBB disruption (broken line) are depicted in panels c and d. No evidence of Gd-EBA tracer uptake within the brain is visible in unoperated control (a, dorsal view) or sham operated brains (g, transverse view). In gross brain slice preparations, regions of BBB disruption are indicated by the uptake of the blue EBA within the parenchyma (b,c,d,e,f), or by the red region on segmented brain images (c). Areas of BBB disruption appear as hyperintense (white) areas on T1-weighted MRI examinations, and correspond with regions of EBA visualized in brain slices (b,c,d). Bar = 5 mm in all panels.
CA1 region were noted between any group in the caspase-3 LI of the hippocampal hemispheres for any of the 4 brain regions examined. No differences observed in the caspase-3 LI between Group 1, 6, or untreated control and choroid plexus brain regions. There were no significant differences controls in at least one area among the superficial cortical, deep cortical, and choroid plexus brain regions. There were no significant differences in at least one area among the superfi cial cortical, deep cortical, and choroid plexus brain regions. There were no significant differences in at least one area among the superfi cial cortical, deep cortical, and choroid plexus brain regions.

Caspase-3 immunohistochemistry
Group 3 caspase-3 LI was signifi cantly higher than all other groups in each of the superfi cial cortical, deep cortical, and choroid plexus brain regions (Figs. 5, 6). Marked caspase-3 immunoreactivity was seen in the SC, DC, and CP regions of Group 3 (Fig. 5f,j,n), with numerous caspase-3 immunoreactive neurons adjacent to the electrode insertion track in the DC region (Fig. 5j). The caspase-3 LI of groups 2, 4, and 5 were also observed to be signifi cantly greater than sham operated or untreated controls or in at least one area among the superfi cial cortical, deep cortical, and choroid plexus brain regions. There were no signifi cant differences observed in the caspase-3 LI between Group 1, 6, or untreated control hemispheres for any of the 4 brain regions examined. No differences were noted between any group in the caspase-3 LI of the hippocampal CA1 region (Fig. 6a).

DISCUSSION
Sub-lethal BBB disruption was achieved immediately following treatment at the lowest energy setting (Group 1), which consisted of 300 bursts with an amplitude of 250 V/cm. Each burst consisted of 200 pulses with a duration of 850 ns for a total on-time of 170 μs. Relative to the size of the brain, the volume of BBB disruption was substantial (0.51 cm³). Other than physical damage due to the electrode insertion, there was no noticeable neuroinfl ammation or cell death when caspase-3 activity from Group 1 was compared to Group 6 controls or the unoperated control. It is important to note that cell morphologic criteria were used to define dead cells and caspase-3 was used to corroborate those fi ndings. Future work should include later time points to investigate the possibility of delayed effects and the reversibility of the BBB disruption.

As the number of bursts containing 500 ns pulses (programmed) was increased (Groups 2 and 3), evidence of cell death was noted by cytoplasmic condensation, nuclear pyknosis, and apoptotic body formation. The same is true when the individual pulse duration was increased to 2 μs, while programming the same on-time (Group 4). Interestingly, Group 3 exhibited markedly greater caspase-3 activity than Group 4. We hypothesize that this effect could be due to the ability of sub-microsecond pulses to exert greater infl uence on intracellular structures. Overall, increasing the number of bursts above 600, or increasing the programmed pulse duration above 500 ns did not signifi cantly alter the volume of BBB disruption. This suggests that the effect has reached a plateau, and additional energy is deleterious to cell viability. In Group 5, necrosis was evident without a signifi cant increase in caspase-3 expression. This fi nding is comparable to that found by Rossmeisl et al., where unipolar IRE pulses applied at similar electric fields caused no signifi cant or specifi c immunoreactivity to Bcl-2, caspase-3, or caspase-9 within the lesions.

The dissipated energy density for each treatment (Table 2) can be calculated by:

\[U = \sigma |E|^2 t \]

where \(\sigma \) is the conductivity of the tissue, \(E \) is the electric fi eld, and \(t \) is the total energized time (burst on-time × number of bursts). The conductivity was estimated to be 0.18 S/m according to data generated by Gabriel et al. for gray matter at 1 MHz. Assuming a perfectly insulative unitary volume, the temperature change can then be estimated according to:

\[\Delta T = \frac{U}{\rho c} \]
made for an IRE treatment, in which it was shown that thermal effects from the surface of the tissue. Future work should include monitoring do not account for heat dissipation between the pulses and heat convection as negligible. From this comparison, we conclude that the effects seen in Groups 1 through 4 were non-thermal in nature. The comparatively higher energy delivery in Group 5 resulted in thermal damage, including coagulative necrosis near the electrodes where the electric field is elevated. However, these temperature predictions are conservative in that they assume the entire tissue is uniformly exposed to the electric field, and they do not account for heat dissipation between the pulses and heat convection from the surface of the tissue. Future work should include monitoring of temperature during treatment to confirm the predictions.

Reversible electroporation combined with chemotherapeutic agents, or electrochemotherapy, has proven to be effective in treating brain tumors in a rat model with minimal side effects. In this pre-clinical work, the chemotherapeutic agent bleomycin was administered directly into the tumor before applying electric pulses, which circumvented the BBB. It was later noted that a potential usage of electrochemotherapy could be to treat the infiltrative margins of a tumor after surgical debulking, as those regions are well-vascularized with an intact BBB. In a study conducted by Hjouj et al., BBB disruption was evaluated for 50 to 90 unipolar pulses as short as 50 μs. When the pulse amplitude was between 330 V/cm and 500 V/cm, it was concluded that transient BBB disruption without permanent tissue damage was the result of reversible electroporation. This is similar to the finding in Ref. 18 that electroporation is predominantly reversible at electric field strengths below 400 V/cm in normal brain.

Here, BBB disruption is observed at an even lower electric field (250 V/cm) when a greater number of bipolar bursts are applied. Therefore, it is feasible that the mechanism of opening the BBB does not rely completely on reversible electroporation. One possible explanation is that the presence of tight junctions increases the transendothelial electrical resistance of the BBB. As a result, there is a large voltage drop across the endothelial cells, and it is possible that even low voltages produce high electric fields that compromise the integrity of tight junctional proteins. BBB disruption without electroporation has been shown in vitro when performing protocols for deep brain stimulation across endothelial cell monolayers. The waveforms were bipolar with individual pulse durations of 90 μs, and they were applied continuously for 5 minutes at 2.5 V/cm. The in vivo microscopic electric field distribution is complicated, and one cannot rule out the possibility of other explanations, including low level heating due to the high electrical conductivity of the blood, without further experimentation.

Researchers have investigated BBB disruption as a health hazard in response to electromagnetic radiation. When 200, 14 ns pulses were applied at 2000 V/cm, increased BBB permeability was noted along with altered localization and decreased levels of the tight junctional protein ZO-1. Magnetic fields have also been used to disrupt the BBB when

![Figure 5](image_url)

Figure 5 Qualitative caspase-3 immunohistochemistry in Groups 1, 3, 6, and unoperated controls. In Groups 1 (a) and the unoperated controls (d), caspase-3 immunoreactivity was rarely observed in neurons within the superficial cortex (SC), deep cerebral cortex (DC), or choroid plexus (CP) epithelium and endothelium. In Group 3 (b), marked caspase-3 immunoreactivity was observed in the SC (f, arrows), CP plexus endothelium (n, thin arrow) and epithelium (n, arrowhead), and DC (j, arrowheads) within neurons adjacent to the electrode track. In Group 6 (e), caspase-3 positive neurons were also observed in the SC (g, arrow) and DC (k, arrowheads) regions as well as in the CP endothelium (o, thin arrow). In panel d, the boxes indicate SC, DC, CP, and HC (hippocampus) regions from which RFV were selected for quantitative caspase-3 analyses. Occasional immunoreactive HC neurons were observed in all Groups (q–t, thin arrows). Bars = 1 mm in panels a–d, and 100 μm in all other panels.

where ρ and c are the density and specific heat capacity of the tissue, respectively. These values are chosen to be the same as water ($\rho = 4.184 \text{ J/(gK)}$, $c = 1 \times 10^6 \text{ J/(gK)}$). For comparison, the calculations were also made for an IRE treatment, in which it was shown that thermal effects were negligible. From this comparison, we conclude that the effects seen in Groups 1 through 4 were non-thermal in nature. The comparatively higher energy delivery in Group 5 resulted in thermal damage, including coagulative necrosis near the electrodes where the electric field is elevated. However, these temperature predictions are conservative in that they assume the entire tissue is uniformly exposed to the electric field, and they do not account for heat dissipation between the pulses and heat convection from the surface of the tissue. Future work should include monitoring
ment volumes within heterogeneous tissues. This could prove beneficial for brain cancer, Parkinson's disease, and Alzheimer's disease. Additionally, with respect to brain cancer, there is the option of performing a combinatorial technique that relies on an initial set of lethal pulse parameters to destroy the primary tumor followed by a sub-lethal set of pulse parameters to improve drug diffusion to the infiltrative cells beyond the tumor margin.

ACKNOWLEDGEMENTS

This work was supported by the Golfers Against Cancer, the Center for Biomolecular Imaging in the Wake Forest School of Medicine, the NSF CAREER Award CBET-1055913, and the NSF I-Corps Award 1265105. C.B.A. acknowledges the NIGMS division of Training, Workforce Development, and Diversity under the IRACDA grant #K12-GM000678. The authors thank Dana Calicott and John Robertson for their assistance with the animal procedures, and Yong Woo Lee for his valuable contributions in designing the experiments.